Medical image segmentation: hard and soft computing approaches
نویسندگان
چکیده
منابع مشابه
Soft Computing in Medical Image Processing
Recent advances in medical imaging modalities such as magnetic resonance (MR) imaging and multidetector computed tomography (MDCT) enable us to acquire high-dimensional, sectional, thin-sliced, and a large number of images within a short acquisition time. The sheer volume of data poses great challenges for human interpretation of images by radiologists. Image processing becomes essential to ana...
متن کاملA study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches
This paper presents a novel idea of intracranial segmentation of magnetic resonance (MR) brain image using pixel intensity values by optimum boundary point detection (OBPD) method. The newly proposed (OBPD) method consists of three steps. Firstly, the brain only portion is extracted from the whole MR brain image. The brain only portion mainly contains three regions – grey matter (GM), white mat...
متن کاملEdge Detection Techniques for Image Segmentation – A Survey of Soft Computing Approaches
Soft Computing is an emerging field that consists of complementary elements of fuzzy logic, neural computing and evolutionary computation. Soft computing techniques have found wide applications. One of the most important applications is edge detection for image segmentation. The process of partitioning a digital image into multiple regions or sets of pixels is called image segmentation. Edge is...
متن کاملSoft Computing based Medical Image Mining: A Survey
Medical image mining is one of the most rewarding and challenging field of application in data mining and knowledge discovery. Soft computing is a consortium of methodologies that provides flexible information processing capability. Its aim is to exploit the tolerance for imprecision, uncertainty, approximate reasoning, and limited truth in order to achieve tractability, robustness, and low-cos...
متن کاملEstimating scour below inverted siphon structures using stochastic and soft computing approaches
This paper uses nonlinear regression, Artificial Neural Network (ANN) and Genetic Programming (GP) approaches for predicting an important tangible issue i.e. scours dimensions downstream of inverted siphon structures. Dimensional analysis and nonlinear regression-based equations was proposed for estimation of maximum scour depth, location of the scour hole, location and height of the dune downs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Applied Sciences
سال: 2020
ISSN: 2523-3963,2523-3971
DOI: 10.1007/s42452-020-1956-4